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Abstract

Conventional value-added (VA) models estimate teacher quality as a simple average of

the difference between students’ actual and predicted standardized test scores. These

models therefore implicitly assume it is just as important to raise test scores of lower-

achieving students as it is to raise test scores of higher-achieving students. I consider

whether a weighted average of residuals might be more useful. Using data from North

Carolina, I find that teacher VA measures become more predictive of teachers’ long-run

impacts when the highest-achieving students are weighted more than the median stu-

dent. Strikingly, even impacts on low-achieving students’ long-run outcomes are best

predicted by increasing the weight on impacts on high-achieving students’ short-run

outcomes. These differences in weights may reflect that either (i) small-sample effi-

ciency (some students are more informative about teachers’ true test-score effects than

others) or (ii) differences in true effects (e.g. test-score effects for different students

might capture different general aspects of teaching). I find empirical evidence support-

ing both explanations. In particular, the large weights for high-achieving students are

partially but not completely explained by the fact that their residuals are less noisy.
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1 Introduction

School systems commonly evaluate teachers using statistical models designed to estimate

their impact on student outcomes. These are called value-added (VA) models. Typical con-

struction of VA measures follows a four-step process. First, the researcher uses a regression

model to predict students’ outcomes using their predetermined characteristics, the most im-

portant of which is a student’s lagged outcome. In steps 2 and 3, the researcher calculates an

average of student residuals (i.e., the gap between actual and predicted outcome) within a

class. This is referred to as an unadjusted VA measure. The final step is a shrinkage correc-

tion, in which the unadjusted VA is “shrunk” or adjusted towards an average to account for

statistical noise in the residuals using an Empirical Bayes framework. These VA measures

are reported in units of standard deviations (SD) of student achievement. For instance, a

test-score VA of 0.1 SD indicates a teacher is estimated to increase students’ test scores on

average above predicted levels by 0.1.

Value-added models are popular with researchers and policymakers – currently, 30 states

use test-score value-added models to evaluate teachers (National Center on Teacher Qual-

ity, 2024) – because they have two main statistical properties which make them useful for

evaluating teacher quality. First, there is a large body of evidence that VA models are approx-

imately forecast-unbiased (e.g., Kane and Staiger, 2008; Konstantopoulos, 2009; Hanushek

and Rivkin, 2010; Bacher-Hicks, Kane, and Staiger, 2014; Chetty, Friedman, and Rockoff,

2014a; Koedel, Mihaly, and Rockoff, 2015). This means that VA measures are fair in the

sense that they do not systematically reward teachers for having better or worse students.

Second, teachers who are estimated to raise test scores also tend to promote student

success on long-run measures such as educational attainment, wages as an adult, and teen

pregnancy (e.g., Chetty, Friedman, and Rockoff, 2014b; Gilraine and Pope, 2021; Backes

et al., 2023; Petek and Pope, 2023; Lavy and Megalokonomou, 2024). If the ideal criteria

for evaluating teachers is their ability to raise test scores, conventional test-score VA models

by construction estimate this aspect of teacher quality. If, on the other hand, the ideal

criteria is based on a teacher’s impact on longer-run outcomes, test-score VA proxies for

these impacts as well while avoiding the impracticality of waiting until students’ long-run

outcomes become realized.

While VA models proxy for a teacher’s ability to affect long-run outcomes, the variation

in a teacher’s test-score effects explains little of the variation in a teacher’s long-run impacts

(e.g., Chetty et al., 2011; Chamberlain, 2013). Adding VA measures using non-cognitive

outcomes (such as absences and disciplinary behavior) to predict teachers’ long-run impact

closes some of this gap (e.g., Jackson, 2012; Chetty, Friedman, and Rockoff, 2014b; Blazar
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and Kraft, 2017; Jackson, 2018; Mulhern and Opper, 2023). These results imply that a

teacher’s effects are multidimensional (teachers impact multiple outcomes simultaneously)

and that conventional test-score VA measures may miss or leave out important information

about teacher quality.

Because test-score VA models use a simple average, these measures equate raising test

scores for the lowest-achieving students with raising test scores by the same amount for

the highest-achieving students. It is not obvious that a one-point increase in test scores is

equally valuable or as important no matter what the baseline achievement is. Nielsen (2019)

finds that getting easier questions right on the Armed Forces Qualification Test (AFQT)

is more predictive of individuals’ long-run outcomes. This suggest there may be room for

improvement in using test-score VA measures to evaluate teachers. In particular, weighting

students equally in a conventional VA model might be unwise if a teacher has different

impacts on different groups of students.

As an example, consider a policymaker whose goal is to select teachers with the highest

long-term impact, where the long-run outcome of interest is high school graduation. The

policymaker could use a conventional test-score VA measure to proxy for a teacher’s impact

on high school graduation. But not all students are equally at risk of not graduating high

school. Students with high lagged test scores are likely to graduate high school no matter

how good or bad a given teacher is. Under such a scenario, a more informative short-run

measure of teacher quality might be a VA measure that gives a higher weight to a teacher’s

impact on lower-achieving students, since those are the students most at risk.

In this paper, I ask the following research questions. Suppose I construct a new test-

score value-added model as a weighted (rather than unweighted) average of student residuals.

First, if I choose the weights with the objective of maximizing the predictive power of my new

VA measure for a teacher’s long-run impact (e.g., on high school graduation), how do these

estimated weights compare to a conventional VA model in which all students are weighted

equally? Second, how much better is this weighted VA at predicting teachers’ long-run

impacts? Third, to the extent that a weighted VA improves predictive power, what explains

the differences in weights across students?

Using data from elementary schools in North Carolina, I find that the estimated optimal

weights for my new VA measure are not equal across all students. The data therefore reject

a conventional VA model is the most predictive measure of teacher’s impact on longer-run

outcomes. I find that, for both math and reading, test-score impacts for the lowest-achieving

students should receive a lower weight than test-score impacts for the median students. Test-

score impacts for the highest-achieving students should receive approximately 1.5 times as

much weight as test-score impacts for the median students. Depending on the subject and
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whether or not I include a teacher’s non-cognitive impacts as additional predictors, I find

my weighted VA increases the predictive power of test-score VA for high school graduation

VA by approximately 10%.

There are three possible explanations for the observed pattern of weights. Explanation

1 is that, in finite samples, these weights reflect differences in the noisiness of residuals. To

maximize efficiency, the students with the highest signal to noise ratios receive the highest

weights. Like explanation 1, explanation 2 is about efficient use of a small sample. Explana-

tion 2 pertains to the covariance of true teacher test-score effects across different students.

I postpone a more in-depth discussion of explanation 2 until Section 5. Explanation 3 is

that these weights do not reflect small-sample efficiency but instead reflect true differences

in teacher quality. Teacher VA likely reflects many aspects of teaching, such as pacing, clar-

ity of instruction, and classroom management. Test-score impacts for different groups of

students might reflect different weights on these general aspects of teaching. If some aspects

are more important for promoting high school graduation than others, then students in bins

which reflect the most important aspects receive the highest weights.

I find that the observed pattern of weights represent both an efficient use of a small sample

and true differences. An efficient use of a small sample approximately completely accounts for

the lower weights on the lowest-achieving students. Small-sample efficiency, however, cannot

fully explain the high weights on the highest-achieving students. The highest-achieving

students receive the highest weight even when I use a teacher’s test-score impacts on all

students to best predict a teacher’s impact on high school graduation measured using only

the lowest-achieving students.

I make three contributions to the value-added literature. First, I derive optimal weights

for use as an alternative to a conventional VA measure. Second, my results are suggestive

that a high test-score VA for the highest-achieving students might reflect teachers who are

good at teaching skills especially important for promoting students’ long-term outcomes.

Third, I provide additional evidence (and confirm the results from Biasi, Fu, and Stromme,

2021 and Eastmond et al., 2024) that teacher’s VA for math and reading scores differs across

students of different baseline achievement.1

The rest of the paper proceeds as follows. In Section 2, I describe the North Carolina data

1There is a large literature that teachers have different test-score impacts on different types of students

beyond higher-achieving versus lower-achieving students. These demographics include race, gender, and

socioeconomic status. For example, see Lavy, Paserman, and Schlosser (2012), Condie, Lefgren, and Sims

(2014), Fox (2016), Delgado (2020), Aucejo et al. (2022), Gershenson et al. (2022), and Graham et al. (2023).

I describe my methodology for showing that teachers differ in their test-score value-added for higher-achieving

versus lower-achieving students in Appendix C. I present results in Table C1.
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I use in my analyses and provide student-level summary statistics. In Section 3, I provide

additional details regarding conventional VA models. In Section 4, I discuss the details of my

procedure for estimating this new VA measure and the estimated weights. I also discuss how

much more predictive my new VA measure is compared to a conventional VA. In Section 5,

I investigate to what extent each of the three possible reasons for the differences in weights

explains my results. In Section 6, I conclude.

2 Data

My data come from the North Carolina Education Research Center (NCERDC) and contain

information regarding all North Carolina public school students. I restrict the data to stu-

dents in grades 3-5 from 1997 to 2011. For students in these grades, it is unambiguous who

their teacher is as students have a single teacher for both math and reading. The data include

standardized test scores in math and reading, demographic information, and an identifier of

the teacher who administered the math and reading test. The data also include informa-

tion on attendance (available starting in 2006), disciplinary behavior (available starting in

2001) (such as number of days suspended within a given school year), whether each student

dropped out in a given year, withdrew, and whether or not each student graduated high

school in North Carolina (available starting in 2002).

I drop observations for students which I cannot map to a particular teacher. I limit my

data to students in reasonably-sized classrooms, defined as classes with between 10 and 35

students, to ensure data quality.

I construct standardized measures of cognitive and non-cognitive outcomes for use in my

analyses. I normalize test scores in math and reading to be mean zero with variance 1 for

each testing year and grade. I re-define absences as the negative natural log of days a student

is absent plus 1 (to avoid undefined values) following Mulhern and Opper (2023). I replace

missing values for absences (as well as days suspended) with values of 0s for years in which

absence or disciplinary data is available. I also create a behavioral index for students based

on a principal component analysis of suspensions and other disciplinary infractions such that

worse behavior receives a lower (more negative) value, which I describe further in Appendix

B.

My restricted sample contains approximately 2.5 million student-year observations 1998

to 2011 for students in fourth and fifth grade.2 My sample contains slightly more males

2I exclude 1997 due to the lack of lagged outcomes available. These lagged outcomes would come from

the 1996 data, which is not available. Students do not take a standardized test in either math or reading in

grade 2. Therefore the earliest grade in which students have a lagged standardized test score for math and
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(51%) than females (49%). Most students (74%) are defined as economically disadvantaged,

and 80% of my sample graduated high school. The average logged-absences is approximately

8. The average class size in my restricted sample is 23 students. I report summary statistics

in Table 1.

3 Conventional Value-Added Models

I begin my discussion of conventional VA models by providing additional details regarding

the four-step construction process. The first step is to use a regression model to predict a

student’s outcome using their predetermined characteristics. The most important character-

istic is a student’s lagged outcome. Test-score VA models use a student’s standardized test

scores in math and reading as the outcome, while other VA models (such as non-cognitive

VA) use student outcomes such as attendance, disciplinary behavior, high-school graduation,

and other longer-term outcomes. Regardless, the construction of VA models is the same for

all outcomes. The typical way of estimating these residuals is to estimate models of the form

Ỹ s
i,t = α + γỸ s

i,t−1 + X̃iβ + ϵsi,t (1)

where Y s
i,t represents outcome s for student i in year t. Y s

i,t−1 is a function of lagged outcomes,

and Xi represents a vector of student-level demographics.3 Tilde (∼) indicates a variable

demeaned at the classroom level, which is equivalent to including a teacher fixed effect.4

Step 2 of constructing a value-added model is to construct a student residual as the

difference between a student’s actual and predicted outcome. The predicted outcome is

calculated using the coefficients from the regression model from step 1. Each student’s

residual ϵsi,t is calculated as

Y s
i,t − α̂− γ̂Y s

i,t−1 −Xβ̂. (2)

These residuals are then recentered to ensure ϵsi,t is mean 0 by subtracting the mean residual

across all students and years. I define the recentered residuals as

rsi,t = ϵsi,t − ϵ̄st , (3)

reading is fourth grade.
3For test-score VA and high school graduation VA measures, I use a cubic of lagged test scores for both

math and reading as well as whether a student is economically disadvantaged, gender, disability status, and

english learner status. To estimate non-cognitive VA measures, I use a cubic of the lagged non-cognitive

outcome in addition to whether a student is economically disadvantaged, gender, disability status, and

english learner status.
4For example, see Mulhern and Opper (2023). This is necessary for feasibility of estimation given the

number of teachers in my sample.
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where ϵ̄st represents the average residual across all students and years.

In step 3, a teacher j’s unadjusted VA in year t is calculated as the average of student

residuals within a classroom. This unadjusted VA measure, defined as

ˆV A
s

j,t =
∑
i

rsi,t, (4)

contains a mixture of a teacher’s true VA in year t and statistical noise. In step 4, this

unadjusted VA is adjusted, or “shrunk”, to account for sampling error.5

Value-added models are a popular way to evaluate teacher quality and have desirable

statistical properties. In 2023, 30 states used VA measures as part of teacher evaluations.

Perhaps the most desirable statistical property of VA models is that they are approximately

forecast-unbiased. This means that for all teachers who are estimated to raise test scores

by θ̂, the average of those teacher’s true effects on test scores is θ̂. This property has

been confirmed in the literature using both experimental methods (e.g., Kane and Staiger,

2008; Bacher-Hicks, Kane, and Staiger, 2014) and quasi-experimental methods (e.g., Chetty,

Friedman, and Rockoff, 2014a; Rivkin, Hanushek, and Kain, 2005). In Appendix E, I provide

evidence that high school graduation VA measures are also approximately forecast unbiased.

Another desirable property of VA models is that test-score VA measures in particular

have been found to be predictive of a teacher’s impacts on long-run outcomes. This enables

test-score VA measures to act as a short-run proxy for teacher quality on long-run impacts.

For example, (Chetty, Friedman, and Rockoff, 2014b) find that teachers with higher test-

score VA are also teachers who improve students’ long-term outcomes such as earnings,

college attendance, and reduce teen pregnancy among their students.

Test-score VA measures, however, do not perfectly predict a teacher’s impacts on these

long-run outcomes. For example, Chetty et al. (2011) analyze data from Project STAR

and finds that the actual variation in teacher impacts on long-run outcomes is five times

larger than the variation implied by test-score VA measures. Similarly, Chamberlain (2013)

finds variation in teacher test-score effects in elementary school explain 1% of the varia-

tion in whether or not a student attends college. Including a teacher’s impact on short-run

non-cognitive outcomes as additional predictors closes some of this gap (e.g., Jackson, 2012;

Chetty, Friedman, and Rockoff, 2014b; Mulhern and Opper, 2023). For example, (Jack-

son, 2012) finds adding 9th-grade teachers’ impacts on short-run non-cognitive outcomes as

5This is similar to a penalized regression, such a lasso or ridge regression. For a more detailed explanation

of shrinkage, see Chetty, Friedman, and Rockoff (2014a). In this paper, I follow the shrinkage methodology

from Mulhern and Opper (2023). My results are not sensitive to whether or not I include shrinkage. I include

summary statistics of my VA estimates in Appendix A.
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additional predictors increases the predictive power of teachers’ test-score impacts for high

school graduation by 20% for reading and 200% for math.

4 Main Analysis: EstimatingWeighted-Average Value-

Added

In this section I discuss my econometric strategy for estimating my weighted VA measure.

I then estimate optimal weights using the data. Using these weights, I ask how much more

predictive this weighted VA measure is, compared to a conventional VA, in predicting a

teacher’s impact on high school graduation.

4.1 Weighted Average VA: Econometrics

To construct weights, I first divide a classroom into 5 bins, or quintiles, based on the distri-

bution of lagged test scores in subject s within a given school and grade. Then I construct

V A∗s as

V A∗s
j,t =

∑
i

( βk1{i ∈ k}1{i ∈ j}rsi,t∑
i

∑
k βk1{i ∈ k}1{i ∈ j}

)
, (5)

where rsi,t represents student i’s residual in subject s in year t, and student i is in teacher j’s

class. An alternative and equivalent formulation of V A∗ is given by

V A∗s
j,t =

1∑
i

∑
k βk1{i ∈ k}1{i ∈ j}

∑
i

βk1{i ∈ k}1{i ∈ j}rsi,t, (6)

where
∑

i

∑
k βk1{i ∈ k}1{i ∈ j} represents the sum of the bin weight times the number of

students in each bin, summed over all bins within class j.

V A∗ is a weighted average of student residuals. Students in the same bin receive the

same weight. Students in different bins receive different weights if the estimated weight βk

for bin k is different from the estimated weight βk′ for bin k′. The denominator ensures the

weights sum to 1 within a particular class.6 I report the estimated weights relative to the

estimated weight on bin 3, or the weight for the median students. Bin weights smaller than

1 indicate bins of students which should be weighted less heavily than the median group of

students. Bin weights larger than 1 indicate bins of students which should be weighted more

than the median student.

6For classes with zero students in a particular bin, I set the sum of residuals and the number of students

in these bins to 0 rather than dropping such a class from my analysis.
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To demonstrate how this weighted VA measure works, I show that a conventional VA

model is a special case of my weighted average measure. A simple average of student residuals

is equivalent to setting βk = 1 for all five bins (or setting βk = 3 or any other number, as

long as the number is the same for all bins). Under such a scenario (using the example where

all βk = 1), my value-added estimator becomes

V A∗s
j,t =

1

N s
j,t

∑
i

rsi,t, (7)

where
∑

i

∑
k βk1{i ∈ k}1{i ∈ j} becomes the number of students in class j, or Nj,s,t, and

βk1{i ∈ k}1{i ∈ j} collapses to 1 for all i, leaving
∑

i ri,j,s,t. I allow for such a set of weights

to occur if weighting all students equally is empirically the most predictive of a teacher’s

high school graduation VA.

As another example, consider a set of estimated weights using 3 bins. Suppose there are

20 students in the class, with 5 students in bin 1, 15 students in bin 2, and 0 students in bin

3. Also suppose the estimated bin-weights (using all classrooms) for each bin are β1 = 2,

β2 = 1, and β3 = 0.5 The denominator of V A∗ =
∑

i

∑
k βk1{i ∈ k}1{i ∈ j} is equal to

2 · 15 + 1 · 5 + 0.5 · 0 = 35 for this particular class. The estimated weight on each student’s

residuals in bin k is βk

35
, or 2

35
on each student’s residual in bin 1 and 1

35
on each student’s

residual in bin 2. There are no students in bin 3 for this class, but the student-level weights

still sum to 1.

4.2 Weighted Average VA: Estimation and Results

To estimate my weighted VA model on the actual data, I choose the weights βk to maximize

the predictive power of this new VA measure for a teacher’s long-run impacts. The longest-

run outcome I observe in my data is a student’s high school graduation. Therefore I seek to

maximize the predictive power of this new VA measure on a teacher’s high school graduation

VA. I estimate the weights to minimize the sum of squared errors in the predicted high school

graduation VA of teacher j in year t using the test-score residuals of teacher j’s students.

I obtain these residuals using step 1 of the conventional VA methodology as described in

Equation 1.

Of course, using the same students to calculate both the weights for this new VA measure

and a teacher’s high school graduation VA would introduce mechanical bias in my estimates

(as noted in Jackson, 2018). Therefore, to construct a teacher’s high school graduation

VA, I combine Jackson’s leave-one-year-out (LOYO) methodology with the methodology for

calculating a shrunken VA measure using multiple years for a given teacher as described

in Mulhern and Opper (2023). I estimate a teacher’s pooled high school graduation VA
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by estimating Equation 1 through Equation 4 with high school graduation as the outcome

variable. I then calculate a teacher j’s adjusted high school graduation VA using all years

other than year t, which I denote as ˜V A
grad

j,−t .

I then use non-linear least squares to minimize the squared prediction error of a teacher’s

LOYO high school graduation VA. I define my optimization problem as

min
βk

[
˜V A

grad

j,−t − β0 − V A∗s
j,t

]2
, (8)

where the choice of βk influences the minimization problem because βk determines the value

of V A∗s
j,t. I choose an intercept β0 and weights on each bin 1 through 5. I report weights

relative to the estimated weight on bin 3, or the weight on test-score impacts for the median

students in each subject.

Figure 1 presents estimated weights for math and reading. The data reject a conventional

VA model is most predictive of a teacher’s long-run impact. In particular, for both subjects,

the higher-achieving students (bins 4 and 5) receive a higher weight than the median student.

For reading, lower-achieving students (bins 1 and 2) receive a lower weight. The estimated

weight on the lowest-achieving students based on lagged reading scores is approximately

two-thirds as large as the weight on the median students. The estimated weight on the

highest-achieving students is approximately twice as high as the weights placed on the other

students.

The result that the highest-achieving students receive the highest weights might seem

counterintuitive. In Appendix F, I construct a toy model in which I pretend the only factor

which impacts a student’s probability of graduating high school is the teacher’s impact on

test scores for a student’s particular bin. For this toy model, I also suppose a teacher’s impact

on test scores in each bin is independent of a teacher’s test-score impact in all other bins.

This is a supposition of the toy model and not an assumption I believe to hold in reality.

(In fact, I show in Appendix C that teacher’s test-score impacts are correlated between

lower-achieving and higher-achieving students.) Under these non-realistic conditions, the

estimated weights I obtain from the toy model (reported in Figure F1) are highest for the

lowest-achieving students and lowest for the highest-achieving students.

Suppose instead of estimating weights to predict a teacher’s high school graduation VA

for all students, the goal is to predict a teacher’s high school graduation VA specifically for

the lowest-achieving students using a teacher’s test-score impacts for all students. If what

matters is a teacher’s true test-score impacts for a student’s particular bin, I would expect

to see higher weights for the lower-achieving students and lower weights for the highest-

achieving students.

I empirically test whether this is true in the data. I define each teacher’s LOYO high
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school graduation VA for students in the bottom b percentile of the achievement distribution

as ¯V A
grad,b
j,t . I define a student to be in the lowest-achieving group based on a student’s

combined lagged math and reading standardized test scores, relative to all students within

the same year and grade. I normalize this total test score to be a standard normal for each

grade and year. I use four alternative definitions of lowest-achieving students, (i) bottom

50% (ii) bottom 30%, (iii) bottom 25%, and (iv) bottom 20%. For each definition, I estimate

min
λk

[
˜V A

grad,b

j,−t − λ0 − V A∗s
j,t

]2
, (9)

where V A∗s
j,t is defined as described above in Equation 5, and ˜V A

grad,b

j,−t is teacher j’s high

school graduation VA measured using only students in the bottom b percentile of the achieve-

ment distribution.

I report estimated bin-weights predicting these low-achieving high school graduation VA

measures below in Figure 2. I also include the Figure 1 estimates (using all students within

a classroom) as hollow gray boxes. The weights on the lower-achieving and higher-achieving

students do not differ when I change which students I use to calculate a teacher’s high school

graduation VA. The implication of this result is that even if I am using a teacher’s test-score

impacts for all students to best predict a teacher’s impact on high school graduation for the

lowest-achieving students, it is a teacher’s impact for the highest-achieving students that

receives the highest weight.

4.3 Estimating Weights Jointly vs Separately

I also estimate optimal weights using a teacher’s impacts on math and reading scores to

jointly predict a teacher’s high school graduation VA. This joint-estimation is more consistent

with the literature finding that a teacher’s impact is multidimensional. In particular, it

follows the idea from Mulhern and Opper (2023) that a teacher’s math VA should incorporate

information about a teacher’s estimate reading VA, and vice versa.

The way I estimate weights for math and reading jointly follows directly from how I

initially estimated weights in Equation 8. I define teacher j’s weighted VA for subject s in

year t as V A∗s
j,t based on Equation 5. A teacher’s out-of-sample high school graduation VA

constructed in the usual way and denoted ˜V A
grad

j,−t . I then estimate

min
κk

[
˜V A

grad

j,−t − κ0 − V A∗,read
j,t − V A∗,math

j,t

]2
, (10)

where the only difference from Equation 8 is that I include V A∗ for both subjects.

I report these results below as Figure 3, and I include the Figure 1 weights as hollow

gray squares. For math, adding in a teacher’s impacts on reading scores increases the weight
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on the lowest-achieving student from below to above 1. The weight on the highest-achieving

students also increases. For reading, the weight on the lowest-achieving students decreases

when I include a teacher’s impacts on math scores. The weight on the highest-achieving

students also increases. The weights for bins 2 and 4 are almost identical whether I estimate

weights for math and reading separately or jointly.

4.4 How Much More Predictive is a Weighted VA Compared to

a Conventional Value-Added?

I now ask how much more predictive a teacher’s test-score impacts are for a teacher’s impact

on high school graduation when I use a weighted, compared to unweighted, average of student

test-score residuals. For each subject, I construct a teacher’s conventional VA in year t

for subject s as the average of student residuals (V Aj,s,t). I calculate that same teacher’s

weighted VA (V A∗
j,s,t) using the weights I estimated in Figure 1.

I define the increase in predictive power of a weighted VA measure (compared to a

conventional VA measure) using the percentage of explained variation in teachers’ high school

graduation VA. I perform the following steps. First, I regress a teacher’s LOYO high school

graduation VA on a teacher’s conventional VA for subject s. I calculate the R-squared from

this regression. I then regress a teacher’s LOYO high school graduation VA on a teacher’s

weighted VA measure, and again calculate the R-squared. I then calculate the percentage

increase in the R-squared when I use the weighted VA compared to the R-squared when I use

the conventional VA as my main independent variable. I limit my sample to teachers with

both a non-missing conventional and weighted VA for a particular subject. This procedure

runs the potential risk of overfitting. My results are robust to cross-validation. I postpone

a more complete description of how I attempt to address overfitting concerns until after I

present results

I begin by showing these results without controls in Table 2. I report results for math

in columns 1 and 2, and results for reading in columns 3 and 4. I cluster standard errors at

the teacher level. The R-squared is higher when I use a weighted VA to predict high school

graduation VA for both math (∼ 20%) and reading (∼ 8%) compared to a conventional VA

in each subject. Both a weighted and conventional VA, however, explain less than 1% of the

variation in teachers’ high school graduation VA. My R-squared values are low in large part

due to a small sample size for each individual teacher. Even if I used a teacher’s true impacts

on test scores as my independent variable, the R-squared value would likely be modest.

I next explore whether including a teacher’s impact on short-run non-cognitive outcomes

absorbs some of the increase in predictive power due to my weighted test-score VA measure.
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Further, I ask if my weighted value-added measure offers additional information about a

teacher’s high school graduation VA beyond what can be explained by using a conventional

VA and non-cognitive VA measures. Therefore I estimate additional specifications in which

I vary whether or not I include these non-cognitive VA measures as additional predictors.

I report results for these additional specifications in Table 3. Columns 1 through 4 show

results for math, while columns 5 through 8 show results for reading. The first two columns

for each subject show results without non-cognitive VA controls. My sample is limited to

teachers with non-missing test-score VA and non-missing non-cognitive VA measures. I

therefore have a smaller number of observations compared to Table 2. Including the baseline

specification ensures comparability between specifications with and without controls.

My results are consistent with the evidence that a teacher’s impacts on non-cognitive

outcomes matter more for predicting a teacher’s high school graduation VA than a teacher’s

test-score impacts. For both subjects, the R-squared roughly doubles when I include non-

cognitive VA measures, regardless of which test-score VA I use. The percentage increase

in explained variation due to a weighted test-score VA is also much lower when I include

these non-cognitive VA measures. For math, the percentage increase in explained variation

decreases from ∼ 27% to ∼ 7.5% when I include non-cognitive VA measures. For reading,

the percentage increase in explained variation decreases from ∼ 9% to ∼ 4%.

My qualitative findings hold when I use a teacher’s test-score impacts on math and

reading to jointly predict a teacher’s high school graduation VA. Table 4 presents results.

I obtain the same pattern of R-squared values, in which (i) the R-squared is much higher

when I include a teacher’s non-cognitive VA measures and (ii) the increase in percentage of

explained variation when I use weighted VA compared to conventional VA decreases (from

∼ 13% to ∼ 6%) when I include non-cognitive VA measures as controls.

4.5 Addressing Overfitting Concerns

I perform a series of analysis to show that my results presented above are not due to overfit-

ting concerns. First, I randomly assign each teacher into either the training half of my data

or the test half of my data. I estimate weights using the training half of the data. I use these

weights to construct V A∗ for both the test and training data. The mean-squared prediction

error in both the test and training sample are not statistically different. This qualitative

result holds when I perform 10-fold cross validation. I randomly assign each teacher to one

of 10 different groups. For each group, I calculate the mean-squared prediction error using

a weighted VA measure where the weights are estimated using the other nine groups. The

average out-of-sample mean-squared error is not statistically different from the in-sample
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mean-squared error.

5 Why These Weights

I now seek to understand to what extent each of the three possible explanations might explain

my estimated weights shown in Figure 1. Recall there are three potential explanations for

the pattern of weights. The first explanation is that the noisiness in student residuals differ

for higher- versus lower-achieving students. In particular, the literature has found that lower-

achieving students often have more noisy test score residuals than higher-achieving students

(e.g., Kane and Staiger, 2008; Koedel, Mihaly, and Rockoff, 2015). The lower weights on the

lowest-achieving students for reading, for example, might be due to relatively high variance

of residuals for these students relative to the variance of residuals in the middle bin.

The second explanation is that a teacher’s VA for certain bins may be more predictive

about a teacher’s impact on other bins. This is a small sample efficiency explanation rather

than a true effects interpretation. It could be that teachers do truly differ in their effects

across different bins, but the bins that receive the highest weight receive the most information

about a teacher’s impacts on the largest number of students, both within and outside of

a particular bin. For example, suppose a teacher’s true test-score impact for the lowest-

achieving students (bin 1) is independent of a teacher’s true test-score impacts for the other

four bins. If true, the students in bin 1 receive the lowest weight. This is driven by small-

sample efficiency. In this scenario, a teacher’s impacts on bin-1 students are not informative

about a teacher’s impacts on any other students, even if teachers do differ in their test-score

impacts on the lowest-achieving students compared to other students in the class.

The third possible explanation is a “true effect” interpretation. A teacher’s VA mea-

sure likely captures a combination of many aspects of teaching, such as pacing, classroom

management, inspiring critical thinking and creativity, and clarity of instruction. Perhaps

being able to increase test scores for particular bins weights particular aspects of teaching

more heavily. The bins that capture the most generally useful aspects of teaching receive

the highest weight.

5.1 Weighted VA: Evaluating Explanation 1

I begin by asking to what extent relative differences in the noisiness of student residuals

between bins might explain my estimated weights. A straightforward way to assess this is

to estimate a set of weights entirely determined by the relative variance of student residuals

within each bin. I estimate this variance-only set of weights for math and reading as follows.
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First, I estimate the variance of student residuals in a particular subject across all classrooms

and across all years. I then normalize these variances such that the variance of student

residuals in the middle bin is 1. The variance of student residuals in the other bins therefore

becomes the relative variance of student residuals compared to the other bin. I then calculate

the weight for each bin as the inverse of the relative variance of student residuals. For

example, suppose the variance of student residuals for reading scores in bin 1 (the lowest

bin) is twice the variance of student residuals for reading scores in bin 3. I define the

variance-only reading weight for bin 1 as 0.5.

I report these variance-only weights as gray squares (alongside the estimated weights from

Figure 1 as blue dots with red standard error bars) below as Figure 4. These variance-only

weights confirm that, for both subjects, residuals for lower-achieving students are noisier

than for higher-achieving students. This relative noisiness explains some but not all of my

results. In particular, this explanation seems to explain the lower weight on lower-achieving

students, but does not fully account for the high weights on higher-achieving students. This

relative noise story does a relatively better job of explaining the weights for the middle bins

(bins 2 and 4) for both subjects.

I conclude from these alternative sets of weights that the pattern of weights I observe

in Figure 1 cannot be fully explained by differences in the noisiness of residuals for lower-

achieving versus higher-achieving students. In particular, the weights implied by such a

difference in noisiness story for the highest-achieving students are larger than those I obtain

in Figure 1. This explanation does account for the lower weights on lower-achieving students.

5.2 Disentangling Explanations 1 & 2 From Explanation 3

I now propose a set of estimated bin-weights to evaluate to what extent an efficient use

of a small sample can explain the observed weights. I attribute any remaining differences

between the observed weights and weights explained by an efficient use of a small sample to

potentially differences in teacher quality.

Suppose an efficient use of a small sample perfectly explained the estimated weights in

Figure 1. If so, then I would expect to see identical weights when I estimate weights to

predict a teacher’s out-of-sample impact on test scores. I estimate weights that best predict

the impact of teacher j on test scores for the next cohort of students in year t + 1. By

definition, the students used to calculate the outcome I am trying to predict on the right-

hand side of the regression (a teacher’s impact on test scores in the next year t+1) and the

student residuals I am using as my left-hand side variables (from period t) are not the same

set of students. Therefore I simply estimate a teacher’s test-score VA separately for each
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year and estimate

min
(γk)s

[
V As

j,t+1 − γ0 − V A∗
j,s,t

]2
, (11)

where V As
j,t+1 is teacher j’s test-score VA in year t+ 1 for subject s.

I report results from estimating Equation 11 as Figure 5 below. I include the initial

weights from Figure 1 as hollow gray squares. Note that the weights estimated using a

teacher’s out-of-sample test-score impacts (dots) are different than the hollow gray squares.

This is more true for math than reading, and more true for the highest-achieving students

compared to the lowest-achieving students. These results indicate an efficient use of a small

sample cannot fully explain my results.

5.3 Additional Weight Estimations

I include additional sets of estimated weights in Appendix D. I observe a similar pattern of

weights when I estimate weights separately for larger versus smaller classrooms (see Figure

D1 and Figure D2 ). Weights are also similar when I swap the years used to estimate a

teacher’s high school graduation VA and a teacher’s impact on test scores (see Figure D3).

Weights are similar when I try to predict a teacher’s leave-one-year-out VA for (i) test scores

in subsequent grades (see Figure D4), (ii) bin-specific test scores (see Figure D5) and (iii)

bin-specific test scores for students in the next cohort (see Figure D6).

6 Discussion

A weighted average of student test-score residuals increases the variation explained of a

teacher’s impacts on high school graduation by about 10%. The exact increase in predictive

power depends on which subject I use to calculate residuals and whether or not I include a

teacher’s impacts on non-cognitive outcomes as additional predictors.

My estimated optimal way to weight student residuals in a value-added model is to place

a lower weight on lower-achieving students (based on baseline achievement), and a higher

weight on higher-achieving students. On average, I estimate the highest-achieving students

should be weighted about 1.5 times as much as the median student. For reading, the lowest-

achieving students should be weighted about 0.5 times as much as the median student. I

observe the same pattern of weights even when I use a teacher’s test-score impacts for all

students to best predict a teacher’s long-run impacts for only the lowest-achieving students.

Because I observe this same pattern of weights when I use test-score impacts to predict

other outcomes besides high school graduation, such as a teacher’s impact on future test

scores, my results provide suggestive evidence standardized tests may be directly testing
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students’ general and specific skills. By specific skills, I mean the math or reading concepts

(e.g., long-addition, reading comprehension, etc.) required to answer a given test question

correctly. General skills might include non-cognitive outcomes such as the ability to stay

focused during a long test. If standardized tests only evaluated students on their specific

skills, I would have expected to see a different pattern of weights when I predict a teacher’s

impacts on future test scores or test scores for specific students compared to when I predict

a teacher’s impact on high school graduation.

I posit two potential reasons as to how a standardized test might directly measure a

teacher’s impact on general skills. First, a teacher’s impact on the higher-achieving versus

lower-achieving students might weight general aspects of teaching differently if the skills

which are important for raising test scores are different for students with different levels of

baseline achievement. Such aspects might include pacing, clarity of instruction, promoting

critical thinking, or encouraging students to take pride in their work.

Second, the easy questions on standardized tests might be a more direct test of general

skills. This might be especially true for the highest-achieving students. As an example,

consider the fourth-grade standardized math test. The highest-achieving students likely

know the specific-skills required to answer every question correctly. For these students,

whether or not they actually answer every question correctly might not be a matter of

knowledge, but rather a matter of whether or not the students are able to stay focused

for the entire duration of the test and/or take the time to check their answers. In such a

scenario, the standardized math test is directly measuring general (i.e., non-cognitive) skills

for the highest-achieving students. For the lowest-achieving students, the same standardized

test may more directly test whether or not students know the material being tested.

This explanation might account for why small-sample efficiency cannot fully explain the

high weight placed on the highest achieving students using a teacher’s impacts on student

math scores. For reading, small-sample efficiency does a better job explaining the high

weights placed on the highest-achieving students. This suggests that perhaps the explanation

based on the scaling of the standardized test is more applicable for math as opposed to

reading. For reading, it might be the case that even if the highest-achieving students know

the basic skills on the test (e.g., how to read paragraphs or use context clues to derive

definitions of new words), they still might come across a word they have not encountered

before or a passage about a subject they are unfamiliar with. There might be a ceiling for

a student’s math-specific skills that does not exist in the same way for a student’s reading-

specific skills.

While suggestive, the idea that standardized tests may directly test general skills (es-

pecially for the highest-achieving students) aligns with other evidence from the literature.
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In particular, my results would align with the finding from Nielsen (2019) that answering

the easier questions correctly on standardized tests is more predictive of students’ long-run

outcomes. My findings suggest the reason why getting the easier questions correct is more

predictive is because easier questions might test students’ ability to execute more than their

knowledge. A particularly important skill for students’ long-run outcomes might be this

underlying ability to ensure tasks are done correctly, even if the student is tired or believes

the task to be easy. If a teacher’s true test-score impacts on the highest-achieving students

more heavily weights a teacher’s impact on this underlying skill, that might explain why

my weighted value-added measure places the highest weight on test-score impacts for the

highest-achieving students.
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7 Tables and Figures

Figure 1: Empirical Bin-Weight Estimates for Math and Reading
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Notes: Each dot represents the estimated weight on each bin from estimating Equation 8. Bars indicate the

95% confidence interval around each estimated weight. The weight on bin 3 is defined to be 1. Figure 1a

shows weights for student math residuals and Figure 1b shows weights for student reading residuals. Student

residuals are calculated based on Equation 1. Limited to fourth and fifth-grade classes with between 10 and

35 students.
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Table 1: Summary Statistics of Student Data

Variable Mean SD Min Max

Female 0.510 (0.500)

Black 0.235 (0.424)

Hispanic 0.053 (0.225)

White 0.483 (0.500)

Asian 0.0159 (0.125)

Economically Disadvantaged 0.838 (0.368)

Student With Disabilities 0.157 (0.364)

Academically Gifted 0.0282 (0.166)

English Language Learner 0.125 (0.111)

Ever Suspended 0.36 (0.48)

Graduated High School 0.805 (0.396)

-Ln(1+Absences) -0.0973 (0.437) -4.95 0

-Days Suspended -0.0880 (1.314) -447 0

Classroom Size 22.869 (3.73) 10 35

Student-Year Observations 2,587,625

Students 1,633,504

Notes: Table reports summary statistics for student demographic, non-

cognitive outcomes, and high school graduation. I restrict my sample to

students in classes with between 10 and 35 students. I do not report min

and max values for indicator variables that take values of either 0 or 1. I

calculate absences as the inverse of the natural log of 1 plus the number

of days a student is absent (consistent with Mulhern and Opper, 2023). I

multiple days suspended by negative 1 such that fewer days suspended is a

better student outcome. My analysis sample is limited to 1998-2011 (due to

the lack of lagged test score information in 1997) for students in fourth and

fifth grade. Lagged test-scores are required for inclusion in my analyses,

and third-graders do not take a standardized test in second grade.
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Figure 2: Estimated Bin-Weights Predicting Low-Achieving HS Grad VA
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Notes: Each dot represents an estimated weight. For each outcome, the weight on bin 3 is normalized to

1. I report initial weights from Figure 1 as hollow gray squares. The legend indicates which students I

used to calculate a teacher’s out-of-sample high school graduation VA. For example, “Bottom 50” indicates

I calculated a teacher’s leave-one-year-out high school graduation VA only for students in the bottom 50th

percentile of combined baseline math and reading achievement. This baseline measure is a normalized sum

of lagged math and reading standardized test scores at the school, grade, and year level. Figure 2a shows

results for math, and Figure 2b shows shows results for reading. Limited to fourth and fifth-grade classes

with between 10 and 35 students.

Figure 3: Jointly Estimated Bin-Weights for Math and Reading
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Notes: Each dot represents an estimated weight. For each subject, the weight on bin 3 is normalized to 1.

I report initial weights from Figure 1 as hollow gray squares. The weights (shown in blue) are estimated

to maximize the predictive power of predicting a teacher’s high school graduation VA using both math and

reading as shown in Equation 10 discussed in Section 4.3. Figure 3a shows results for math, and Figure 3b

shows shows results for reading. Limited to fourth and fifth-grade classes with between 10 and 35 students.
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Table 2: Predictive Power of Weighted vs Unweighted VA: Baseline

Math Reading

(1) (2) (3) (4)

Conventional (Unweighted) VA 0.000566*** 0.000967***

(0.000114) (0.000127)

Weighted VA 0.000581*** 0.000984***

(0.000106) (0.000123)

Observations 84,704 84,704 84,678 94,678

R2 0.0010 0.0012 0.0017 0.0019

% Increase in Explained Variation – 19.56 – 8.15

Notes: Table 2 reports results from regressing a teacher’s leave-one-year-out high school graduation value-added

(VA) on a teacher’s test-score VA in a particular subject. There are no other controls in the regression. I report

clustered-standard errors at the teacher level in parentheses. Conventional (Unweighted) VA indicates test-score VA is

calculated as the unweighted average of student residuals in a the subject indicated by the column heading. Weighted

VA indicates test-score VA is calculated using the estimated weights shown in Figure 1. The percentage (%) increase

in explained variation for each subject is calculated as the percentage change in the R-squared value of the regression

when I use the weighted VA as the regressor compared to when I use the conventional VA for the same subject as the

regressor. Limited to fourth and fifth grade classes to between 10 and 35 students. p < 0.001∗∗∗, p < 0.05∗∗, p < 0.1∗.
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Table 3: Predictive Power of Weighted vs Unweighted VA: Non-Cognitive

Math Reading

Baseline Non-Cognitive Baseline Non-Cognitive

(1) (2) (3) (4) (5) (6) (7) (8)

Conventional (Unweighted) VA 0.000508*** 0.000439*** 0.00984*** 0.000898***

(0.000134) (0.000133) (0.000150) (0.000147)

Weighted VA 0.000538*** 0.00463*** 0.00100*** 0.000921***

(0.000125) (0.000123) (0.00146) (0.00143)

Suspension VA 0.0112*** 0.0112** 0.0112** 0.0112**

(0.00421) (0.00421) (0.00420) (0.00420)

Behavioral Index VA 0.00400* 0.00388* 0.00371* 0.00367**

(0.00208) (0.00208) (0.00207) (0.00207)

Observations 67,595 67,595 67,595 67,595 67,571 67,571 67,571 67,571

R2 0.0008 0.0010 0.0023 0.0025 0.0016 0.0018 0.0031 0.0033

% Increase in Explained Variation – 26.73 – 7.52 – 8.96 – 4.25

Notes: Table 3 reports results from regressing a teacher’s leave-one-year-out high school graduation value-added (VA) on a teacher’s test-score VA in a particular subject. I

report clustered standard errors at the teacher level in parentheses. Conventional (Unweighted) VA indicates test-score VA is calculated as the unweighted average of student

residuals in a the subject indicated by the column heading. Weighted VA indicates test-score VA is calculated using the estimated weights shown in Figure 1. Suspension VA

is defined as a teacher’s out-of-sample VA for reducing number of days suspended. Behavioral Index VA is defined as a teacher’s out-of-sample VA for increasing a student’s

behavioral index score (described in Appendix B). Columns 1,2, 4, and 5 represent analogous results from Table 2 restricted to teacher-years with non-missing non-cognitive

VA measures. Columns 3,4,7, and 8 show results include the non-cognitive VA measures as controls. The percentage (%) increase in explained variation for each subject and

whether or not I include non-cognitive VA measures as controls is calculated as the percentage change in the R-squared value of the regression when I use the weighted VA as

the main regressor compared to when I use the conventional VA for the same subject as the main regressor. Limited to fourth and fifth grade classes to between 10 and 35

students. p < 0.001∗∗∗, p < 0.05∗∗, p < 0.1∗.

Figure 4: Estimated and Variance-Based Bin-Weights by Subject

(a) Math

0
.5

1
1.

5
2

Es
tim

at
ed

 W
ei

gh
t

1 2 3 4 5
Bin

Estimated Weights Variance-Only Weights

(b) Reading

0
.5

1
1.

5
2

Es
tim

at
ed

 W
ei

gh
t

1 2 3 4 5
Bin

Estimated Weights Variance-Only Weights

Notes: I report variance-only weights as gray squares in the above graph. The blue dots with error bars

represent the initial estimated weights and their 95% confidence intervals from Figure 1. Figure 4a shows

results for math, and Figure 4b shows shows results for reading. Limited to fourth and fifth-grade classes

with between 10 and 35 students.
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Table 4: Predictive Power of Weighted vs Unweighted VA: Joint Estimation

Baseline Non-Cognitive

(1) (2) (3) (4)

Conventional Math VA 0.000143 0.000100

(0.000147) (0.000146)

Conventional Reading VA 0.000879*** 0.000826***

(0.000158) (0.000157)

Weighted Math VA 0.000175 0.000135

(0.000128) (0.000128)

Weighted Reading VA 0.000827*** 0.000779***

(0.000138) (0.000123)

Suspension VA 0.0111*** 0.0111**

(0.00420) (0.00420)

Behavioral Index VA 0.00366* 0.00359*

(0.00207) (0.00208)

Observations 67,549 67,549 67,549 67,549

R2 0.0017 0.0019 0.0031 0.0033

% Increase in Explained Variation – 13.27 – 6.36

Notes: Table 4 reports results from regressing a teacher’s leave-one-year-out high school graduation value-added

(VA) on a teacher’s test-score VA for both math and reading. I report clustered standard errors at the teacher level

in parentheses. Conventional (Unweighted) VA indicates test-score VA is calculated as the unweighted average of

student residuals for each subject. Weighted VA indicates test-score VA is calculated using the estimated weights

predicting a teacher’s impact on graduation using both math and reading test-score residuals. These weights are

shown in Figure 3. Suspension VA is defined as a teacher’s out-of-sample VA for reducing number of days suspended.

Behavioral Index VA is defined as a teacher’s out-of-sample VA for increasing a student’s behavioral index score

(described in Appendix B). Columns 1 and 2 report results without controlling for non-cognitive outcomes. In

columns 3 and 4 I also control for a teacher’s non-cognitive VA measures. The percentage (%) increase in explained

variation for each subject and whether or not I include non-cognitive VA measures as controls is calculated as

the percentage change in the R-squared value of the regression when I use the weighted VA as the main regressor

compared to when I use the conventional VA for the same subject as the main regressor. Limited to fourth and fifth

grade classes to between 10 and 35 students. p < 0.001∗∗∗, p < 0.05∗∗, p < 0.1∗.
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Figure 5: Estimated Bin-Weights Predicting Subsequent Cohort VA

(a) Math
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(b) Reading
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Notes: Each dot represents an estimated weight. For each outcome, the weight on bin 3 is normalized to

1. I report initial weights from Figure 1 as hollow gray squares. Next Year Cohort indicates a teacher’s

estimated VA using math or reading scores for students in the next year. Figure 5a shows results for math,

and Figure 5b shows shows results for reading. Limited to fourth and fifth-grade classes with between 10

and 35 students.
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A Appendix A: Additional Tables and Figures

I include summary stats for my estimated value-added (VA) measures by subject and portion

of the class below in Table A1. Each row indicates both which students are included in

estimating a teacher’s VA and whether the VA uses math or reading test scores. The mean

of all VA measures is appropriately 0. I report the standard deviation (Std. Dev) of each

VA measure. Column 1 indicates the students used in the calculation of each VA. Whole-

Class, for example, indicates a teacher’s VA is calculated using test-score impacts for all

students, while Top 50% indicates a teacher’s VA is calculated using only test-score impacts

for students above the median of lagged achievement in a particular subject (relative to

a student’s year and grade) are included. Column 3 indicates the raw, or unadjusted VA

measures calculated based on Equation 1 and Equation 4. To calculate an adjusted, or

shrunk VA measure, I follow the procedure for estimating VA using all years according to

Mulhern and Opper (2023). I assume there is no drift in teacher VA. I calculate the Empirical

Bayes estimate for each teacher and subject, and report the Std. Dev of these measures in

Column 4. This is equivalent to assuming that a teacher’s impact on math or reading scores

is independent of the same teacher’s impact on the other subject’s test scores. I denote this

as 1D shrinkage. I relax this assumption in Column 5, which I denote 2D shrinkage. Finally,

I report the number of teachers for which I have non-missing data for Column 5 in Column

6.
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Table A1: Summary of Value-Added Measures by Dimensionality (Grades 3-5) Pooled Years

Group Subject Unadjusted Std. Dev 1D Std. Dev 2D Std. Dev 2D Teachers

(1) (2) (3) (4) (5) (6)

Whole-Class (Typical VA) Math 0.209 0.108 0.149 45,221

Reading 0.155 0.0557 0.0711 45,221

Top 50% Math 0.216 0.0851 0.132 35,763

Reading 0.157 0.0282 0.0371 35,763

Bottom 50% Math 0.230 0.102 0.146 41,209

Reading 0.191 0.0541 0.0622 41,211

Top 30% Math 0.224 0.0834 0.122 30,245

Reading 0.169 0.0254 0.0298 30,246

Bottom 30% Math 0.246 0.0969 0.140 38,988

Reading 0.222 0.0529 0.0590 39,005

Top 25% Math 0.230 0.0839 0.120 29,156

Reading 0.177 0.0252 0.0296 29,156

Bottom 25% Math 0.253 0.0948 0.135 38,026

Reading 0.234 0.0529 0.0558 38,032

Notes: This table reports the student-weighted standard deviation of estimated teacher value-added (VA) measures

for the students and subject indicated in columns 1 and 2. Top/Bottom XX% represent the split used to determine

value-added (VA) for top and bottom students. For example, Top/Bottom 50% Math indicates I define top math

students as students with a lagged math score above the median lagged math score within a particular school, grade,

and year. I define Bottom 50% math students as students with a lagged math score below or equal to this same

median. Column 3 represents the standard deviation (Std. Dev) of student residuals within a split and subject

across teachers, or each teacher’s unadjusted VA measure. For columns 4 and 5 I apply the methodology detailed in

Mulhern and Opper (2023). In column 4 I assume a teacher’s VA within a particular split is independent across math

and reading. In column 5 I relax this assumption (which most aligns with Mulhern and Opper, 2023). I include the

number of teachers included in my Column 5 estimates in Column 6. These estimates use all years available for a

given teacher. I restrict to classrooms with between 10 and 35 students and to student test-scores in grades 4 and 5.

Note that my effective sample is limited to 1998-2011 as there are no lagged test scores in the 1997 data, the earliest

year I have available.
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B Appendix B: Creating Students’ Behavioral Index

In this section, I discuss my methodology for constructing a student’s behavioral index.

I first conduct a principal component analysis (PCA) using the number of (i) short-term

suspension days, (ii) long-term suspension days, (iii) number of incidents leading to short-

term suspension, (iv) number of incidents leading to long-term suspension, (v) number of

incidents leading to expulsion, (vi) number of incidents leading to detention, (vii) number

of incidents leading to privileges being revoked, (viii) number of incidents leading to other

consequences, (ix) number of incidents leading to a 1-year suspension, and (x) number of

days in which a student is sent home from school. I report summary statistics for these

measures below as Table B1.

Table B1: Summary Statistics of Student Data: Behavior

Variable Mean SD Min Max

Short-term Suspension Days 0.152 1.000 0 58

Long-term Suspension Days 0.003 0.351 0 90

Short-term Suspensions 0.229 0.721 0 15

Long-term Suspensions 0.000 0.021 0 1

Times Expelled 0.000 0.005 0 1

Times Detention 0.001 0.032 0 6

Times Privileges Revoked 0.001 0.048 0 9

Times Other Consequences 0.001 0.030 0 4

Times Received 1-year Suspension 0.000 0.004 0 1

Times Sent Home 0.008 0.145 0 13

Notes: Table reports summary statistics for student behavioral outcomes

used to construct my behavioral index. These summary statistics are for

students who appear in the suspension data. I restrict my sample to stu-

dents in classes with between 10 and 35 students. Data is available from

2001 to 2011. I exclude 2001 due to a lack of available lagged-behavioral

information for students.

I report the results from the PCA estimation using one principal component below in

Table B2. I generate a behavioral index as the predicted value from this PCA regression. I

flip the sign of this index so that a more negative (i.e., lower) index represents worse behavior.

Values closer to 0 represent better behavior or fewer disciplinary consequences.

When I merge this behavioral index onto the test-score data there are some students who

do not appear in the suspension/disciplinary data. I interpret this as these students did not
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have any disciplinary incidents in a given year. I therefore assign these students as having

a higher behavioral index than the best-behaving students with a non-missing behavioral

index value. I then transform this behavioral index variable into a standard normal variable

within each grade and year.

Table B2: Principal Component Analysis Loadings: Component 1

Variable Component 1 Loading

Short-term Suspension Days 0.5317

Long-term Suspension Days 0.4345

Short-term Suspensions 0.5408

Long-term Suspensions 0.4686

Times Expelled 0.0459

Times Detention 0.0315

Times Privileges Revoked 0.0308

Times Other Consequences 0.0623

Times Received 1-year Suspension 0.0887

Times Sent Home -0.0259

Eigenvalue 1.68

Variance Explained (%) 16.81

Notes: Table B2 shows results from a principal component analysis (PCA)

on the variables included in the table. I include summary statistics for these

outcomes above in Table B1. I use the predicted value from this PCA to

generate an initial behavioral index for students. I multiply this inverse

by -1 such that a behavioral index closer to 0 (smaller in absolute value)

represent better-behaved students. Students not in the suspension data

receive a behavioral index score higher than the best-behaved students in

the suspension data.
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C Appendix C: Documenting Differences in Teacher

VA for High Versus Low Achieving Students

I now describe my methodology for documenting that teachers have different underlying, or

true, test-score impacts for higher-achieving versus lower-achieving students. I first discuss

how I define higher-achieving and lower-achieving students. I then describe the log-likelihood

function I combine with a maximum likelihood estimator to estimate the correlation between

a teacher’s underlying VA for higher-achieving students and a teacher’s underlying VA for

lower-achieving students. I discuss my assumptions and then present results below in Table

C1.

I divide students within a class into top and bottom students based on their lagged

test-score in a given subject. I first calculate the distribution of lagged math and reading

scores for all students within a given year, school, and grade. I then classify students into

“top-” or “bottom-” performing students based on how their lagged achievement compares

to this broader distribution. I use three different definitions of top vs. bottom students for

each subject. First, I define a “Top/Bottom 50” split in which I classify a top student as

having a lagged test score above the median, and a bottom student as having a lagged test

score below the median. Second, I define a “Top/Bottom 30” split in which top students

have a lagged achievement in the top 30th percentile, and bottom students have a lagged

achievement in the bottom 30th percentile. Third, I define a “Top/bottom 25” split using

the top and bottom 25th percentile to classify top and bottom students.

For each definition of top- and bottom-performing students, I estimate a teacher’s VA for

math and reading separately for top and bottom students according to equations 1 - 4. For

example, I estimate a teacher’s unadjusted math VA for top students using the Top/Bottom

50 split by estimating equations 1 - 4 restricting my sample to only students whose lagged

math score is above the median grade-level score in a particular year. I estimate a standard

error for this unadjusted VAmeasure calculated as the standard deviation of student residuals

within a class and “group” (top versus bottom) divided by the square root of the number of

students within that class and group. As an example, if there are 16 top students and the

standard deviation of these 16 students’ math residuals is 1, I calculate the standard error

of a teacher’s top unadjusted VA as 0.25.

I assume that the variance of each of these estimated VA measures is the variance of

a teacher’s true test-score impacts plus noise. I also assume that both the estimated VA

and the noise in these estimated values are normally distributed. These assumptions imply

that I can use a maximum-likelihood estimator (MLE) to estimate the correlation between
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teachers’ true VA for top and bottom students by minimizing

vsj,t · Σs
j,t · vsj,t, (12)

where vsj,t is a vector of a teacher j’s estimated VA in year t for subject s. This matrix vsj,t

is defined as

v =

[
ˆV A

top,s

j,t

ˆV A
bot,s

j,t

]
,

where ˆV A
p,s

j,t represents the unadjusted VA for teacher j in subject s in year t for either

top-performing students ( ˆV A
top,s

j,t ) or bottom-performing students ( ˆV A
bot,s

j,t ).

I define Σs
j,t as the variance-covariance matrix between a teacher’s true VA measures for

top and bottom students, denoted as

Σs =

[
σ2
V Atop,s

σV AtopV Abot,s

σV AtopV Abot,s
σ2
V Abot,s

]
.

I present the results of these MLE estimates below in Table C1. Columns 1 and 2

represent the estimates from a baseline specification. In columns 3 and 4 I control for the

average classroom achievement and variance in classroom achievement in order to account for

differences in signal to noise ratio of student residuals due to class size. For both specifications

the estimated correlation in true VA measures for top and bottom students is less than 1.

This correlation becomes weaker as the definition of top versus bottom students becomes

stricter. These results providence additional evidence teachers differ in their true test-score

effects for students with different baseline levels of achievement.

33



Table C1: Estimated Latent Correlation Among Top/Bottom Value-Added

Baseline Classroom Moments

Split Subject Correlation Std. Error Correlation Std. Error

(1) (2) (3) (4)

Top/Bottom 50% Math 0.836 0.00227 0.811 0.0024

Reading 0.682 0.00431 0.645 0.00436

Top/Bottom 30% Math 0.590 0.00463 0.590 0.00470

Reading 0.439 0.00672 0.313 0.00743

Top/Bottom 25% Math 0.509 0.00531 0.531 0.00524

Reading 0.362 0.00722 0.212 0.00795

Notes: Top/Bottom XX% represent the split used to determine value-added (VA) for top and

bottom students. For example, Top/Bottom 50% Math indicates I define top math students as

students with a lagged math score above the median lagged math score within a particular school,

grade, and year. I define bottom 50 math students as students with a lagged math score below or

equal to this same median. Correlation (columns 1 and 3) and Std. Error (columns 2 and 4) represent

the estimated correlation coefficient and standard error from a maximum likelihood estimator as

described in Appendix C. VA is defined as the average of unadjusted residuals defined in Equation 1

restricted to either top or bottom students. Columns 1 and 2 do not include any additional controls.

In columns 3 and 4 I include the class-level mean and variance of lagged achievement as additional

controls. Restricted to fourth and fifth grade classes of between 10 and 35 students from 1998 to

2011.
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D Appendix D: Additional Weighted VA Estimates

In this section I discuss alternative bin estimates to investigate (i) the stability of my esti-

mated bin-weights across outcomes and (ii) which of the three explanations could explain

the observed pattern of weights. I begin by ruling out that differences in class-sizes is driv-

ing my results by estimating Equation 8 separately for smaller (10-19 students) and larger

(20-35 students) classes.7 I find no significant qualitative nor quantitative difference in my

estimated weights for reading and math scores. I include those results below as Figure D1

(reading) and Figure D2 (math).

I present my estimated weights for smaller (10-19 students) and larger (20-35 students)

classes below as Figure D1 and Figure D2. I do not observe differences in estimated weights

for differently-sized classes, and these weights are similar to the estimated weights I report

in Figure 1.

7Recall that I restrict all analyses to classes with between 10 and 35 students.
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Figure D1: Reading Bin-Weight Estimates by Class Size
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Notes: Each dot represents the estimated weight on each bin from estimating Equation 8. Bars indicate

the 95% confidence interval around each estimated weight. The weight on bin 3 is defined to be 1. Figure 1a

shows weights for student math residuals and Figure 1b shows weights for student reading residuals. Student

residuals are calculated based on Equation 1. Limited to fourth and fifth-grade classes with between 20 and

35 students.

I next discuss additional sets of estimated weights showing noisiness of student residuals

does not completely explain the weights from Figure 1. Perhaps the variance-only weights

I report in Figure 4 do not fully explain my results because while I estimate variances

across all years and classrooms, Equation 8 estimates average weights using classroom-year

observations where the number of students in any given classroom and year is by definition

limited to between 10 and 35 students. If I had larger classrooms, perhaps the weights I

would obtain by estimating Equation 8 would more closely mirror the variance-only weights

I show in Figure 4.

To test this, I artificially increase the number of students defined as being in the same

classroom by estimating weights where I switch the years used to calculate a teacher’s high

school graduation VA and a teacher’s test-score impacts. I use a teacher’s estimated high

school graduation VA using only students in year t. Instead of calculating V A∗ using students

in year t, I treat the data as if all students taught by teacher j not in year t were in one

large class taught by teacher j in year t. I then estimate

min
αk

[
V Agrad

j,t − α0 − V A∗s
j,−t

]2
, (13)

where V Agrad
j,t teacher j’s high school graduation VA calculated only for students in year t.

V A∗s
j,−t is defined as

V A∗s
j,t =

1∑
i

∑
k βk1{i ∈ k}1{i ∈ j}

∑
i

βk1{i ∈ k}1{i ∈ j}rsi,−t, (14)
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Figure D2: Math Bin-Weight Estimates by Class Size

(a) Small (10-19 students) Classes
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(b) Large (20-35 students) Classes
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Notes: Each dot represents the estimated weight on each bin from estimating Equation 8. Bars indicate

the 95% confidence interval around each estimated weight. The weight on bin 3 is defined to be 1. Figure 1a

shows weights for student math residuals and Figure 1b shows weights for student reading residuals. Student

residuals are calculated based on Equation 1. Limited to fourth and fifth-grade classes with between 10 and

19 students.

or the weighted sum of residuals for all students who had teacher j in any year other than

year t, which I denote rsi,−t.

I report estimated weights for this reverse leave-one-year-out approach below as Figure

D3. I include the initial weights from Figure 1 as hollow gray squares for comparison. The

bin weights for the first two bins are qualitatively similar for both math and reading. For

math (Figure D3a), there is no statistical difference between these weights and the initial

weight for bin 4. For math and reading, the weight on the highest-achieving students (bin

5) is higher than the corresponding weight from Figure 1.

D.1 Additional Estimates Regarding Efficient Use of Small Sam-

ple Explanations

In this section I present additional estimates concerning whether explanation 2 can explain

my results. Recall that explanation two is also a story about small-sample efficiency. A

teacher’s impact on a particular bin may be more informative about a teacher’s impact

on students in other bins. The high weight on the highest bins may simply reflect that a

teacher’s impact on the highest-achieving students is also more predictive about a teacher’s

impact on other students within the class in other bins. This explanation does not rule out

that a teacher may have different impacts on higher versus lower-achieving students, which

is explanation 3.

If the weights shown in Figure 1 are driven by such an explanation, then the outcome
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measure I am trying to best predict using student residuals should not change the observed

pattern of the weights. Suppose this explanation is true. The highest-achieving students

receive a higher weight because a teacher’s impact on their high school graduation is more

informative about a teacher’s impact on high school graduation for other students in the

same class. If I estimate weights to predict, say, a teacher’s impact on students’ test-scores

in the subsequent grade, I would still expect that a teacher’s impact on the highest achieving

students to be more informative of a teacher’s impact on other students (to the extent that

a teacher’s high school graduation VA and future test-score VA are correlated). I would

expect to observe a lower weight on lower-achieving students and a higher weight on the

highest-achieving students for any outcome for which I can estimate a teacher’s out of sample

value-added.

I use a teacher’s test-score VA for the next two years as my alternative outcomes. That

is to say I estimate Equation 8 replacing a teacher’s leave-one-year-out (LOYO) high school

graduation VA with a teacher’s LOYO VA on math and reading scores in both the next

grade and the next next grade. For example, I estimate a third grade teacher’s VA on her

students’ math and reading scores in fourth and fifth grade. I define a teacher’s VA on her

students’ test scores in the next grade as a ”1-year post” VA and scores in the next next

grade as a ”2-year post” VA. More formally, I define teacher j’s pooled LOYO VA for test

scores in subject s in future period t+ τ as ˜V A
s

j,t+τ . I define V A∗
j,s,t using student residuals

for subject s in the current year (using Equation 5) and then estimate

min
(∆k)s

[
˜V A

s

j,t+1 −∆0 − V A∗s
j,t

]2
, (15)

separately for each subject and each future time period.

I report results from estimating Equation 15 below in Figure D4. I include the initial

weights from Figure 1 as hollow gray boxes. The results provide empirical support that this

small-sample story may have a lot of explanatory power. I observe almost no differences in

weights regardless of which outcome I estimate weights to try and predict.

The finding that the highest-achieving students are most predictive of outcomes for the

lowest-achieving students warrants additional investigation. If this is a real result, I would

also expect the highest-achieving students to receive the highest weight when I predict a

teacher’s impacts on test scores for any one particular group of students. To test this, I

estimate weights that best predict a teacher’s out-of-sample test-score VA for students in

one particular bin. I repeat this for each of the five bins for both math and reading.

I calculate five bin-specific VA measures for each subject, one for each bin. For example,

I calculate a teacher’s bin 1 reading VA as a teacher’s reading VA only for students who are
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Figure D3: Reverse LOYO Bin-Weight Estimates by Subject
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Notes: The blue dots with error bars represent estimated leave-one-year-out weights and their 95% confidence

intervals. I report the initial weights from Figure 1 as hollow gray squares. Figure D3a shows results for

math, and Figure D3b shows shows results for reading. Limited to fourth and fifth-grade classes with between

10 and 35 students.

in the bottom 20th percentile of lagged achievement in reading. I then estimate

min
Λk

[
˜V A

s

j,b,−t − Λ0 − V A∗s
j,t

]2
, (16)

where ˜V A
s

j,b,−t is the LOYO bin-specific VA for teacher j in year t limited to students in bin

b for subject s. V A∗
j,s,t is the weighted average of student residuals in year t for subject s as

defined in Equation 5.

I report estimation results for Equation 16 for each subject below as Figure D5. I include

the initial Figure 1 weights as hollow gray squares. I observe the same pattern of weights

for both subjects regardless of which bin-specific VA measure I am trying to predict.

I can again estimate an alternative set of weights using a teacher’s impact on the next

cohort of students (similar to my approach described in Section D.1). Here, I estimate each

teacher’s bin-specific VA for math and reading scores in the next year t+1. I use the residuals

of all students in year t to estimate the weights that best predict each of the five possible

bin-specific VA measures in t+ 1. I report results below as Figure D6. I find similar results

to those shown in Figure D5. I table a more detailed discussion of the implications of these

results to Section 6.
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Figure D4: Estimated Bin-Weights Predicting Future Test-Score VA

(a) Math
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(b) Reading
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Notes: Each dot represents an estimated weight. For each outcome, the weight on bin 3 is normalized to 1. I

report initial weights from Figure 1 as hollow gray squares. Figure 4a shows results for math, and Figure 4b

shows shows results for reading. Limited to fourth and fifth-grade classes with between 10 and 35 students.

Figure D5: Estimated Bin-Weights Bin-Specific VA

(a) Math
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(b) Reading
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Notes: Each dot represents an estimated weight. For each outcome, the weight on bin 3 is normalized to 1.

I report initial weights from Figure 1 as hollow gray squares. The legend indicates which students I used

to calculate a teacher’s out-of-sample test-score VA in each subject. For example, “Bin 1” in Figure D5a

indicates I calculated a teacher’s leave-one-year-out math VA using only the lowest-achieving students, or the

students with a baseline standardized math test score in the bottom 20th percentile. This baseline measure

is relative to standardized test scores in each subject at the school, grade, and year level. Figure D5a shows

results for math, and Figure D5b shows shows results for reading. Limited to fourth and fifth-grade classes

with between 10 and 35 students.
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Figure D6: Estimated Bin-Weights Next Cohort Bin-Specific VA

(a) Math
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(b) Reading
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Notes: Each dot represents an estimated weight. For each outcome, the weight on bin 3 is normalized to 1.

I report initial weights from Figure 1 as hollow gray squares. The legend indicates which students I used

to calculate a teacher’s test-score VA in the next year in each subject. For example, “Bin 1” in Figure D6a

indicates I calculated a teacher’s math VA in the next year using only the lowest-achieving students, or the

students with a baseline standardized math test score in the bottom 20th percentile. This baseline measure

is relative to standardized test scores in each subject at the school, grade, and year level. Figure D6a shows

results for math, and Figure D6b shows shows results for reading. Limited to fourth and fifth-grade classes

with between 10 and 35 students.
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E Appendix E: Are High School Graduation Value-

Added Measures Unbiased?

In this section, I investigate whether graduation value-added measures are approximately

forecast unbiased. Previous literature has shown that test-score VA measures are approxi-

mately forecast unbiased, but it is not obvious a priori this statistical property extends to

value-added measures using a long-run outcome nor a binary outcome such as high school

graduation. To do so, I follow the methodology described in Chetty, Friedman, and Rockoff

(2014a) for showing that test-score VA measures are approximately forecast unbiased.

I begin by showing that, on average, changes in the average high school graduation value-

added within a school and grade are strongly correlated with changes in actual graduation

rates for students in the same school and grade. I first estimate each teacher’s high school

graduation value-added for year t using students in all years except for current year t and

previous year t−1. I then estimate the graduation rate for all students within a given school

and grade for each year. I then estimate

∆ ˆV A
grad

s,g,−{t,t−1} = δ +∆Grads,g,t + ϵs,g,t, (17)

where ∆ ˆV As,g,−{t,t−1} is the change (defined as year t minus year t−1) from year t−1 to t in

the average high school graduation value-added for all grade g teachers in school s (leaving

out students in years t and t− 1). ∆Grads,g,t is the change in graduation rates for students

in grade g and school s from year t− 1 to year t. I weight this regression by the number of

students.

I report results below in Table E1. I report baseline estimates in Column 1, and include

year fixed effects in Column 2. I include year by school fixed effects in Column 3. My

baseline results mirror results from Chetty, Friedman, and Rockoff (2014a)’s Table 4. The

standard errors do not rule out that high school graduation VA is forecast unbiased at the

5% level. The bias implied by the coefficient estimate is (1-0.970) 3%. This bias is higher

(∼ 8%) when I include year fixed effects.
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Table E1: Evaluating Forecast Unbiasedness of High School Graduation VA

(1) (2) (3)

Change in Mean Teacher HS Grad VA 0.970*** 0.917*** 0.921***

(0.0772) (0.0744) (0.0786)

Year Fixed Effects X

School x Year Fixed Effects X

Observations 41,810 41,810 41,810

R2 0.0012 0.0038 0.110

Notes:. Dependent variable in all columns is the change in the high school gradua-

tion rate for students in a given school and grade between year t and year t−1. The

independent variable, Change in Mean Teacher HS Grad VA, is the change in the

average teacher high school graduation within a school, grade, and year. I calcu-

late this change as follows. First, I calculate each teacher’s high school graduation

value-added in each year excluding the current and previous year. I then calculate a

student-weighted average high school graduation value-added for each school, grade,

and year. I compute the difference in this average high school graduation between

year t and year t− 1. Column 1 does not include controls. In Column 2 I add year

fixed effects. Column 3 includes school by year fixed effects. Limited to fourth and

fifth grade classes to between 10 and 35 students. p < 0.001∗∗∗, p < 0.05∗∗, p < 0.1∗.
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F Appendix F: Toy Model

F.1 Toy Example Estimation and Results

I step back from reality and construct a toy example in order to provide additional intuition

as to why I might expect a weighted value-added measure to weight higher-achieving and

lower-achieving students differently. In this toy example, suppose the long-run outcome

of interest to the policy maker is whether or not a student graduates high school. Also

suppose a student’s latent, or underlying, propensity to graduate high school follows a normal

distribution according to the model

PR(Graduatedi,j,t|Ỹi,s,t−1) = Φ(δ0 + δ1Ỹi,s,t−1 + δ2Ỹ
2
i,s,t−1 + δ3Ỹ

3
i,s,t−1 + X̃iβ + ωi,s,t), (18)

where Ỹ represents the lagged test score of student i from year t−1 in subject s. The vector

of covariates X contains the same covariates as included in Equation 1.

From this data generating process, there are some students who are more at risk of not

graduating high school than other students. Suppose that 80% of students graduate high

school, as is the case in my North Carolina sample. The students who are more at risk

of not graduating high school are more likely to be lower-achieving students. In a value-

added setting, if the policy maker’s goal is to maximize high school graduation, the optimal

weighting scheme might place a higher weight on students more at risk of not graduating than

on students who are high achieving. Higher-achieving students are more likely to graduate

high school irrespective of having a teacher who has a high impact on high school graduation,

and may receive a lower weight according to this framework.

I derive a set of empirical weights according to this framework by directly estimating the

relationship between lagged achievement and a student’s marginal propensity to graduate

high school. First, I estimate Equation 18 in order to obtain each student’s propensity to

graduate. I then determine the slope of the normal distribution at each student’s estimated

latent propensity to graduate. This slope gives an approximation of how “at risk” a particular

student is of not graduating high school. A steeper slope indicates a slightly better teacher

might make the difference between a student graduating high school or not. Student’s with

the highest marginal propensity to graduate receive the highest weight. I normalize the

weights within each classroom such that the sum of weights within a classroom sum to 1.

I estimate marginal propensity to graduate, and therefore student weights, separately

using lagged math and reading scores. I divide students into vintiles (20 bins) of lagged

achievement in each subject and report the average estimated weight within each bin. I then

re-scale the weights such that the weight on the middle bin (bin 10) is equal to 1. Weights

higher than 1 therefore represent students who are more at-risk, and therefore should receive
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a higher weight, than the median student. Weights lower than 1 similarly represent students

less at-risk and students who should receive a lower weight than the median student. I

present these results below as Figure F1.

I make the following suppositions in this toy example. First, I suppose a teacher’s value-

added (VA) in each bin is independent of a teacher’s VA in every other bin. Second, that

a teacher’s VA for a student’s particular bin is the only factor that affects that particular

student’s probability of graduating high school. I present results of this toy example using

both math and reading lagged test scores as Figure F1.

These toy example weights illustrate that, in a scenario in which students’ risk of not

graduating are correlated with lagged achievement, a weighted VA may increase the ex-

planatory power of a teacher’s long-run impact compared to an unweighted, conventional

VA measure. The weights for both math and reading in Figure F1 imply that students with

the lowest lagged achievement, those at the highest risk of not graduating, receive the high-

est weight. These weights decrease in a non-linear fashion as lagged achievement increases.

The weights are lowest for students with the highest lagged-achievement. The weights imply

that highest-achieving students should be weighted about 25%-33% as much as the median

student, which suggests that even the best students are slightly at risk of not graduating

high school. I now turn to the data to empirically decide how different students should be

weighted within a VA model.

Figure F1: Toy Model Estimated Weights By Vintiles of Lagged Achievement
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Notes: Each dot represents the average weight on students with a lagged achievement within a particular

vintile of lagged achievement. Figure F1a shows weights based on lagged math achievement, and Figure

F1b shows weights based on lagged reading achievement. Weights are calculated as the estimated slope in a

student’s predicted latent, or underlying, propensity to graduate according to the model given by Equation

18. Weights are normalized within each classroom such that the sum of student-level weights sum to one

within each classroom. I rescale weights such that the weight on the bin 10 is equal to 1. I restrict my

analysis to fourth and fifth grades in classrooms with between 10 and 35 students between 1998 and 2011.
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